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ghen thin elastic plates containing holes are under tension and in a 
state of plane stress, generally speaking there arise regions of com- 
pressive stress near the holes. The compressive stresses may attain 
such a magnitude that in the regions where they are acting the plate be- 
comes unstable and buckles, whereupon the state of stress in the remain- 
ing unbuckled portion of the plate is drastically changed. The buckling 
of regions near holes in thin plates under tension has been well docu- 
mented by experiment. The analysis of the buckling under tension of a 
thin plate containing holes is necessary for a correct calculation of 
the stress concentration near the holes. Hence considerable interest 
attaches to the formulation and solution of the problem of buckling of 
a thin plate with holes under tension. 

Taken as a whole, the problem of buckling for a plate with a finite 
flexural rigidity at this time presents apparently insurmountable diffi- 
culties of a mathematical and even more fundamental nature. 

However, in the case of a plate with zero flexural rigidity, the 
buckling problem allows an exact mathematical formulation and may be 
effectively solved for a large number of technically important problems. 

Some problems of the buckling under tension of a plane membrane con- 
taining holes are formulated and solved below. As usual, by a membrane 
we mean a plate with flexural rigidity equal to zero. The mathematical 
problem reduces to the solution of a certain quasilinear system of equa- 
tions in the first partial derivatives, which is of the parabolic type. 
for ti% buckled region, and the classical equations of the plane problem 
of elasticity theory in the unbuckled region. The boundary of the 
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buckled region is unknown beforehand and must be determined in the pro- 
cess of solving the problem. The solution sought here is the asymptotic 
limit of the solution for a plate with a nonzero flexural rigidity. The 
other asymptotic limit, in which the flexural rigidity of the plate be- 
comes infinitely large, is given by the solution of the plane problem 
of elasticity theory for the exterior of a hole. The investigation of 
the buckling of a membrane with holes under tension is by itself of 
interest, since there are a large number of flexible plates and films 
which closely approach a membrane. 

The problem of buckling of a membrane turns out to be closely related 
to the problem of failure under compression of an elastic body, the 
tensile strength of which is much less than the compressive strength, 
It is shown that the mathematical. formulations of these classes of prob- 
lems are equivalent, so that the solution of the problem of failure of 
certain materials may be modelled on a membrane. 

In the paper there is also indicated a means of approximately includ- 
ing the flexural rigidity of the plate (in problems of fracture, corre- 
sponding to the tensile strength of the elastic body). 

1. Formulation of the problem. 1. We imagine a membrane in a 
state of plane stress and having a buckled region S. We assume that the 
displacements almost everywhere on the contour L of the buckled region 
S are small in comparison with a characteristic dimension of the region 
S. The unbuckled region of the membrane, being in a state of plane 
stress, fulfils the conditions of the plane problem of linear elasti- 
city theory, while the displacements in the region S normal to the plane 
of the unbuckled region will be assumed small in comparison with the 
characteristic dimension of the region S. Ifence it is possible to assume 
that the state of stress in region-S is described by 
the thickness of the membrane of the stresses a%, aY 
of Cartesian coordinates xy coincides with the plane 
portion of the membrane). These stresses satisfy the 
tions 

the averages over 
and T (the plane 
of thzYunbuckled 
equilibrium equa- 

The principal stresses oI and u2, of which o1 is the minimum and uT2 
the maximum, are determined by the well-known formula 

(2.2) 

In a membrane it is not possible to have negative (compressive) 
principal stresses [II. Hence a necessary and sufficient indication of 
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the buckled region is the vanishing of the minimum principal stress oi. 

Therefore from formula (1.2) we obtain a relation between the stresses 

which must be identically satisfied in the buckled region S 

If the stresses are given on the portion of the contour L which co- 

incides with the boundaries of the membrane, then the relations (1.1) 

‘and (1.3) form a complete system of equations for the determination of 

the state of stress in the buckled region S, which is moreover inde- 

pendent of the deformation (a statically determinate problem). 

We will assume that on the boundary of the buckled region S there are 

no discontinuities in the displacements. Then clearly all stress compo- 

nents will be continuous as one passes from the region S into the un- 

buckled region. 

‘Ihe stresses in the unbuckled region of the membrane are described 

[21 by the potentials O(z) and ‘t’(z) of Kolosov-Vuskhelishvili 

0, + 0, = 2 [@ (2) + 0 (z)l (2 = z + iy) 

6, - a, + 2ir, = 2 m (4 + y (41 
(1.4) 

2. Let us consider a somewhat different problem. An elastic body with 

holes, which is in a state describable by the plane problem of elasti- 

city theory (a state of plane strain or plane stress), is subjected to 

compression. We assume that the tensile strength of the material is much 

smaller than its compressive strength, while the applied loads are large 

in comparison with the tensile strength of the material. Such properties 

are possessed by a large number of real materials, for example, glass, 

cast iron, soft soil, and so forth. Under compression of the body there 

arise near the holes regions of tensile stress. Since the material can- 

not withstand tensile stresses, fracture zones appear near the holes. 

For the materials mentioned just now it may be assumed that in the frac- 

ture zone the maximum principal stress a2 vanishes, whence from formula 

(1.2) we obtain the relation (1.3) between the stresses in the fracture 

zone (however, in this case we have ux < 0. oy < 0). 

In the fracture region the equilibrium equations (1.1) are also valid. 

Thus the mathematical formulation af the present problem of fracture co- 

incides with the problem of buckling of a membrane under tension. This 

enables one to solve the fracture problem with the aid of the corre- 

sponding mathematical problem modelled on the membrane. 

In the following, for the sake of definiteness, we will refer every- 

where to the buckling of a membrane. Obviously, the solution of the 
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fracture problem is obtained by changing the sign of the stress in the 
corresponding buckling problem. 

2. Stresses in the buckled region. 1. We will consider equa- 
tions (1.1) and (1.3). Condition (1.3) is satisfied if we take 

Introducing these values into the equations of equilibrium, we obtain 
a system of two quasilinear differential equations in the first partial 
derivatives of the unknown functions a(x, y) and p(x, y) 

We seek the characteristics of the system (2.2). For this as usual 
[31 we supplement equations (2.2) by the two conditions 

gdx+ -$dy=da, gdx+ gdy =dp 

and we seek the curves for which the Cauchy problem is insolvable. For 
such curves the determinant of the system of linear algebraic equations 
in the partial derivatives of the functions a(%, y) and p(x, y) reduces 
to zero. 

We obtain 

ady--x=0 (2.3) 

We require that this curve be the curve of a weak discontinuity. For 

this it is necessary that the numerator in Cramer’s formula vanish, 
whence we find the condition which must be satisfied on the character- 
istic curves 

wa--ad$=O (2.4) 

lhus the system (2.2) has one family of characteristics, which are 
the straight lines y = Cx f C,, along which the relation p = Ca is 
satisfied (system of parabolic type). 

We note that the equilibrium equations and the condition (1.3) are 
invariant under a change of coordinates from the ny system to any other 
system of Cartesian coordinates <q. If the c-axis is chosen along the 
characteristic, while the q-axis corresponds to the normal to it, then 
we find that along the characteristic q = 0 the following condition is 
satisfied 

u, = Qn = 0 along q = 0 (2.5) 
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From the formulas (2.5) follows a simple mechanical interpretation of 

the characteristic: the characteristic is the curve alonG which buckling 

of the membrane occurs. 

3 a. We consider the solution of the Cauchy problem for the parabolic 

system of equations (1.1) and (1.3). Let there be given a smooth curve 

AB in the xy plane (see the figure) described by r = x,,(s), y = ye(s), 

on which are specified the bounded and continuous functions u,, = a,(s), 

1 nt =1 nt (s) representing given loads. 

The Cartesian coordinate axes tn are formed, respectively, by the 

tangential and normal directions to the arc AR at any point. !‘e assume 

for the present that the functions a,(s) and lnt(s) nowhere vanish 

simultaneously on the arc An. From any point of the arc AR we construct _ 
a straight-line characteristic, the equation of which is written in 

form 

2 - 50 (s) = - f (4 IY - Yo (41 

the 

‘Ihe lines (2.6) form a one-parameter 

family in s. We denote the region bounded 

0 
6 

by the arc AB and the straight character- 

istics emanating from the ends A and R 

X 
by S. Since f(s) is a continuous function 

m of s, then through each point of the 

region S there passes clearly at least 

one rectilinear characteristic. We will 
prove the following fundamental theorem: 

Theorem 2.1. ‘lhe Cauchy problem for the parabolic system of equations 

(1.1) and (1.3) is solvable if and only if the function f(s) is mono- 

tonic in the broad sense. If this condition is satisfied, the solution 

of the Cauchy problem exists and is unique in the entire region S; the 

solution is found here in closed form. 

Monotonicity of the function f(s) in the broad sense means geometric- 

ally that a bundle of rectilinear characteristics intersecting the arc 

AB consists of different parallel lines. We assume that the function 

f(s) * is not monotonic. ‘lhen there is at least one point of intersection 
of the characteristics. ‘Ihis point we will call singular. It is clear 

that at the singular point there may be: (1) either zero stress canpo- 
nents 0% = 0 = 7 = 0; or (2) an infinitely large radial stress and 
the remaining St&es equal to zero. ‘lhe second case corresponds to 
the presence at the singular point of the buckled region of some 
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concentrated force which is specified beforehand. 

Let there be no concentrated forces in the buckled region 5’ of the 

membrane. ‘Ihe singular point is the center from which there spreads out 

a fan of radial characteristics. The points of intersection of these 

characteristics with the arc AI1 are also singular points, which con- 

tradicts the initial assumption that the functions an(s) and T,~(s) do 

not vanish simultaneously anywhere on the arc AR. Thus the necessity of 

the monotonicity in the broad sense of the function f(s) for the solv- 

ability of the Cauchy problem has been proved. From the preceding con- 

siderations there proceeds the following important corollary. 

Corollary. If there are no concentrated forces in region S and if 

there is even one singular point in region S, then every point of region 

S is singular. 

We will construct the solution of the Cauchy problem, assuming that 

the function f(s) is monotonic in the broad sense. 

We consider an orthogonal system of curvilinear coordinates <r) in 

region S, formed by a bundle of nonintersecting straight characteristics 

<(n, y) and a family of curves n(n, y) orthogonal to them (see the 

figure). ‘Ilie equations of the curves orthogonal to the characteristics 

are obviously found by solving the equation 

where 

fined 

In 

dY 1 
XT= 

-- 
f(S) (2.7) 

s is in turn a function of the independent 

implicitly by equation (2.6). 

variables x and y, de- 

particular, when the tangential stress T,,~ (s) is equal to zero on 

the arc AB, the family of lines 6(x, y) is normal to the arc AB (which 

in this case must not be concave if the Cauchy problem is to be SO~V- 

able), while the family n(x, y) consists of the arc AB itself and curves 

in the region S which are equidistant from AR as measured along the 

characteristics. 

We write the equations of equilibrium (1.1) in 

coordinates [&I and assume that u = 

equations reduces to an identity, 
‘I T@l 

= 0. One 

while the other 

where H, and H, are the coefficients of IAU&. 

orthogonal curvilinear 

of the equilibrium 

takes the form 

(2.8) 

In an infinitesimal neighborhood of each rectilinear characteristic 

the system of orthogonal curvilinear coordinates 6~) ohviously coincides 
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with the system of polar coordinates I+ (r is the radius of curvature 

of the coordinate curve rl, 0 is the angle), the origin of which is 
chosen on the extension of the characteristic at the center of curva- 
ture. We obtain 

Making use of (2.9), we find the solution of equation (2.8) 

0: = 
a,” (8) + z,: (4 R (S) 

Q, (4 r 

(2.9) 

(2.10) 

Here R(s) is the radius of curvature of the coordinate curve q at 
the point of intersection of the arc AB and the corresponding character- 
istic. 

In particular, when -rnt(s) = 0 at a certain point, then R(s) is the 
radius of curvature of the arc AB at that point. 

Thus the Cauchy problem for equations (1.1) and (1.3) has been solved 
in closed form. ‘lhe uniqueness of the solution of the Cauchy problem 
follows imnediately from the construction of the solution itself. 

3. Now let the functions u,(s) and T,,,(S) vanish at some point of 
the arc AB. ‘Ihe characteristic through this point is tangential to the 
arc AR at this point. On the one side of this tangent towards which the 
characteristics emanating from the arc AB are directed the theorem just 
proved is valid. In order to construct the solution of the Cauchy prob- 
lem on the other side of the tangent it is necessary to be able to solve 
the Cauchy problem for the arc AB, on which the values of the function 
are specified and which is either a characteristic or the envelope of 
the characteristics. We will prove the following theorem: 

Theorem 2.2. If the arc AB, on which the functions u,(s) and T,~( s) 
vanish, is curved, then the solution of the Cauchy problem for equations 
(1.1) and (1.3) is equal to zero everywhere within the region S. If the 
arc AB, on which the functions u,(s) and -r,,(s) vanish, is a straight 
line, then the solution of the Cauchy problem is generally speaking not 
unique and is determined by the formulas 

3n = Znf = 0, Of = f(n) (2.11) 

where f(n) is an arbitrary nonnegative function. 

For a convex arc AR the proof follows imnediately as a consequence 
of the first theorem. Therefore let the arc AB be concave. At least one 
point in the region S can be found such that the characteristic drawn 
through it crosses the boundary of the region S. Then according to the 
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corollary to lheorem 2.1 all points of the region S will be Singular. 

In the case where A5 is a straight line, the only characteristic which 
can be constructed through an arbitrary point of the region S and will 

not intersect the boundary of the region S is a straight line parallel 

to the boundary of S. The general solution of the problem for a bundle 

of characteristics parallel to the boundary n = 0 is obviously given by 

the formulas (2.11). We note that according to the foregoing, the solu- 

tion correspondin g to f(n) # 0 is unstable for small variations in the 
arc AR and small perturbations in the value of the function on the bound- 

ary. Therefore the only acceptable solution for the case where AR is a 

straight line is also the solution which vanishes in the entire region S. 

4. Let the membrane be the exterior of a circle of radius rO, on which 

there is applied a constant tensile load o, = q. In this case the charac- 
teristics are radii, the buckled region occupies the entire membrane, 
and the stresses in it are given by the formulas 

6@ = Z,@ = 0, or = fv0) I r (2.12) 

In Passing to the limit p - m, rO - 0 such that liwfpre) I= Q, then we 
obtain a singular point of the type of a nucleus of strain. The formulas 
(2.12) also give the solution to the problem of a membrane, the contour 
of which consists of arcs of circles of radius rO with loads cr, = q and 
circles of radii ‘r > rO free from stress. The passage to the limit in 
this case gives a singularity at the origin of the type caused by a con- 
centrated radial force. We note that buckling does not occur if the con- 
centrated force is obtained by taking the limit of a sequence of delta 
functions representing a normal load on a rectilinear boundary. There- 
fore in the solution of problems concerning a membrane with concentrated 
forces it is necessary to show what limiting case they correspond to. 

3. Holes witfi two cusps , completely surrounded by buckled 
regions. 1. Let there be an infinite elastic membrane containing n 
holes, the contours of which have up to two cusps and are completely 
surrounded by zones of buckling. At infinity there are stresses acting 

which increase according to a polynomial law. Also, on the contours of 
the holes loads are applied, so that in the buckled zones the stresses 

are expressed by the formulas 

where the constant ak may be different in the various buckled zones, 

and the complex quantity a is the same constant for all the buckled 

zones. 

With the help of the basic relations (1.4) of N.I. Muskhelishvili 
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the boundary conditions on the unknown multiply connected contour L, 
which divides the buckled and unbuckled regions, may be written in the 
form 

4 Re 0 (2) = <I&, SD (z) + Y (z) = a (3.2) 

We pass to the parametral plane of the complex variable < with the 
aid of the transformation z = o(c). ‘lhe analytic function ~(5) con- 
formally maps any canonical region of the g-plane (for example, the ex- 
terior of parallel cuts) onto the unbuckled region in the z-plane 
bounded by the contour L. In the <-plane the following boundary value 
problem is obtained for the three analytic functions o(c), q(j) = 
OM~,l , qJ(<, = mg1: 

4Req(t) =bkr 0 TJ’ (5) + 9 (5) 0’ (5) = a0 (j) (3.3) 

We introduce the analytic function ~(5) 

(3.4) 

The second boundary condition of (3.3) may be easily transformed with 
the aid of the function x(c) into the two Dirichlet problems 

Re [a 03 + x 631 = 0, Im 10 (5) - x (01 = 0 (3.5) 

The Dirichlet problem has been well investigated. In many cases its 
solution may be found in closed form ES,61 . 

2. As an example we consider the simplest case of an infinite membrane 
with a single hole, stretched at infinity by the constant stresses 

The cusps of the contour, which is stress-free, are located on the 
x-axis at the points x = f 2. Further requirements imposed on the con- 
tour will be made clear after solving the problem; they arise from the 
condition that the buckled region surrounds the whole contour of the 
hole. According to Theorem 2.2, in this case we have uk = a = 0. For 
the canonical region on the c-plane we choose the exterior of the single 
cut (-1, +l) with the corresponding points o(f1) = *f, o(m) = a in the 
z-plane. 

‘lhe boundary conditions for the Dirichlet problems (3.3) and (3.5) 

for the cut (-1, +l) are written in the form 

Re ‘F (Cl = 0, Re b (5) + x (5) I = 0, Im 10 (6) - x (C)l = 0 (3.7) 
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According to formulas (l-4), (3.6) and (3.4)‘ for 5 - m the functions 

T(5) I o(c) and ~(5) behave in the following manner: 

‘p 03 = + eJxw 4 %/Oc> + 0 c-2), 0 (5) = 0 (51, x (5) = 0 (5”) (3.8) 

Moreover, the function q(c) is unbounded, while the functions of&I) 
and x(s) are bounded in the neighborhoods of the ends 5 = *l of the cut. 
The general solution of the Dirichlet problem (3.7)‘ satisfying the con- 
ditions (3.8), is written in the form [5,6I 

(y’c”-1=r;+O(5-1) for 5-m) 

The unknown constants A, B, C, D and E are real. In order to deter- 
mine them we use the following conditions: 

1) condition (3.4), relating certain coefficients in the expansions 
of the functions o(g), x(c) and (p(c) at infinity; 

2) the condition that there be no concentrated forces at the cusps 
z = fl (from which it follows that the singularities of the functions 
0(z) at these points be integrable); 

3) the condition of correspondence of the points o(+l) = 1, 
0(-l) = -1. As a result we obtain 

A = E = 21 d~w-4xw 
5zpo+ 3sx”0 ’ 

c = 1 1-2 B = D - 0 (3.10) 

We will now find the boundary of the buckled zone. Setting 5 = t in 

the mapping function o(c), we obtain the equation of its contour 

x (t) = At3 + Ct, y (t) = A (I - 12)“z (1 3 t 3 - 1) (3.11) 

The family of curves (3.11) depends on oY~/uXoo, the ratio of the 
tensile stresses at infinity. All the curves have two axes of symmetry, 
the x-axis and the y-axis, and are tangent to the w-axis at the points 

x = Itl. Investigation shows that for CT m = v,” the boundary of the 
buckled zone coincides with the cut (- 1, +I) on the real axis; for 
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uxm “uy” -c 5az” the contour of the boundary is a smooth curve having a 

horizontal tangent at x = 0. For oYm < CT,~ the buckling occurs on the 

second sheet of a two-sheet lliemann surface (the sheets are joined 

alon the cut (-1, +I)); this case corresponds physically to buckling 

on pieces of tile memlrrane which are attaclled to opposite sides of the 

cut; the contours of the boundary of the buckled region in this case 

have a horizontal tangent at n = 0. 

For a 
CD 

= 50 OD the boundary of the buckled zone will be the astroid 

(four-cuYsp hypo:ycloid) .2/3 t y2i3 = 1213, having a vertical tangent 

at x = 0, while for u 

boundary a loop which las no ;hysical meaning (an analogous circumstance ? 

CO’5am there appears on the contour of this 

arises in the theory of cracks [71). ‘bus for u m <5o OD, the solution 

of the formulated problem exists, while for u ,““’ 50 
co% 

the problem in 

its present formulation is insolvable. Physically th:s may be explained 

by the fact that as the cusp appears only on the contour of the zone of 

buckling, in the neighborhood of this point compressive stresses origi- 

nate, since the flexural rigidity of the plate is finite, though small. 

Consequently, the pure membrane formulation of the problem is valid 

only up to the appearance of a cusp on the contour of the zone of buck- 

1 ing. 

Note 3.1. The formulas (3.9) also give the solution of the problem 

of buckling of a membrane which is cut between two concentrated forces 

applied at the points t = *I and directed opposite of one another, when 

constant tensile stresses act at infinity. In this case for the deter- 

mination of the unknown constants the condition (2) should be replaced 

by the condition that the singularities of the function @(I) at the 

points z = *I are those corresponding to the given forces. 

Note 3.2. If the coefficient of intensity of the stress UY in the 

neighborhood of the cusps L = *I of an elastic membrane exceeds a 

certain value, which is a constant for a given material and thickness 

of the membrane, the length 1 begins to increase with increasing stress 

uY 
m. The dependence of the length 1 on the stresses CTY” and u m and 

modulus of cohesion K may be determined by using the conditioi of 

Barenblatt in the theory of equilibrium cracks [71. 

3. In certain cases a finite flexural rigidity of the plate may be 

taken into account in an approximate manner. We consider the method 

applied to the simplest example. Let an infinite elastic plate with a 

cut (-1, +l) along the real axis be subjected to tensile stresses oxco 

and uy OD at infinity. We assume that in the zone of buckling, which sur- 

rounds the whole cut, there are constant stresses (1.1) 

(Jr = Is, uy = 0, z -0 -w - (3.12) 
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which satisfy the boundary conditions and the equations of equilibrium. 

‘Ibe negative stress u is of the order of some mean value of the com- 
pressive stresses in the buckled region, for which we may use for ex- 
ample the critical stress in a plate of width 1 (and of the same thick- 
ness and material). 

The solution of the ~th~ati~al problem is carried out in a manner 
analogous to the previous one. The 

cp (b) = + + 

The functions o(c) and x(g) are 
it is necessary to assume 

function ~(0 is written in the form 

(5,03 + allm - s) I 

4Jf/5’--1 
(3.13) 

found by the formulas (3.9)) in which 

The contour of the zone of buckling has the same character as that 
for the membrane, but the boundary of nonexistence of the solution is 
moved back considerably. In particular, when uzm = 0, buckling begins 
for irYa = - u, and with increasing a w the region of buckling grows 
until o w <- 5a (for o m = - 
as before) ; for crYm > -’ 

5a theYcontour of buckling is an astroid, 
50 the solution has no physical meaning for the 

reason mentioned earlier. 

It is of interest to find the dependence of the length of a moving 
equilibrium crack in a plate subjected to loads oXa and oyw and a stress 
o in the buckled region. Using the condition of Berenblatt 1’73 and ob- 
taining the solution, we find 

iaa 8s* (a: + 3z,u) - 3s) (K is the modulus --_ 
K a+ (5s,W - cs,” + a) (s,” + Gym - a)’ of cohesion) 

(3.15) 

A cricf of any length in the plate is always stable for SoYw<azm -0; 
for 50 011 - o each value of the crack length corresponds to a 
certaii value of the critical load. 

4. Holes partially surrounded by zones of buckling. We 
will mention one general class of problems of buckling under tension of 
a membrane with holes, in which a solution may be obtained (sometimes 
in closed form). We note that a contour free of loads and having no 
cusps clearly may not be completely surrounded by a region of buckling. 
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Let the contour of the hole (simply or multiply connected) consist of a 
certain number of rectilinear sepents, on which the normal displace- 
ment u, is specified as a piece-wise constant function, the stress TV,, 
is equal to zero and arbitrary curvilinear arcs which are completely 
surrounded by regions)of buckling. We assume’that in the regions of 
buckling the following stresses are zero: 

o2 + ay = 0, cry - a, + 2iz,, = 0 (4.9) 

‘Ihe unknown boundary of the buckled and unbuckled zones is denoted 
by L, while that portion of the boundary of the membrane consisting of 
the rectilinear segments and lying in the unbuckled region is denoted 
by hf. For an arbitrary Cartesian coordinate system tn the following re- 
presentation may be used [zI : 

q + a, = 2 10 (4 + @ (41 

on - 51 + 2iz,, = 2ezie [TO’ (2) + Y (z)] (4.2) 

2p( 
$L+i%) = x0 (2) - @ (2) - e-!@ [zSV@ + Y (z)] 

Here ~1 and K are the elastic constants and 8 is the angle between 
the t-axis and the x-axis. ‘Thus the following expression is obtained 
for the Kolosov-Muskhelishvili potential (D(z) 

(%+i)@(Z)=un+2P~+i(- 
%I 

rtn + 2P at ) (4.3) 

With the help of formulas (4.2) and (4.31, the boundary conditions 
of the problem may be written in the form 

4 Re ul (2) = 0, %D’ (2) + Y (2) = 0 on L 

Im Q, (2) = 0, Im {ezrej ii@’ (2) + Y (2) I} = 0 on M 

(4.4) 

Here ej is the angle formed by the jth rectilinear segment of the 
boundary with the x-axis (in the direction in which the contour L + IV 
is traversed). 

We pass to the parametral plaFe of the complex variable 5 by means 
of the transformation z = o(c). Tbe analytic function o(c) confonnally 
maps the exterior of a cut in the crplane parallel to the real axis 
onto the unbuckled region of the z-plane bounded by the contour L + M. 

‘he images of the contours L and M in the c-plane will also be denoted 
by L and M. 

In the c-plane we obtain from fonrmlas (4.4) the following boundary 
value problem for the three analytic functions o(c), q(c) = @[o(g)] and 
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y(5) = ~[o(~)l 

Im cp (c) = 0 on M, 4Recp (5) = 0 on L 

@ UJCP’ UJ + 0’ (09 (5) = 0 on L 

Im {bziej [ $$p’ (f) + $ (t)]} = 0 OIL M (4.5) 

Im [e--iej o ([)I = dj on M 

‘IlIe last condition of (4.5) is the complex form of the equation of 

the jth rectilinear segment of the boundary 

9 = 5 TV Bj + dj I CO5 8j 

VJe introduce the analytic function x(j) 

(4.6) 

With the aid of the function x(c) the last three conditions of the 

boundary value problem (4.5) may be written in the form 

w(5) + x (5) = 0 on L 14.7) 

Im [e-“Qo (c)l = djp Im [Pi x (c)] = dj on M 

The boundary value problem (4.7) may in certain cases be solved in 

closed form. For example, let the contour L + hl be the totality of seg- 

ments of the real axis. This may be the case when the contour L + M has 

an axis of symmetry in the z-plane [81. We cut the c-plane along the 

real axis and consider the upper half plane Im 5 30. 

On the cut portions N of the real axis 3 the boundary condition may 

clearly be given in the form 

Im Q (5) = 0, h x (5) = 0 on N (4.8) 

The functions ~(5) and x(c) are analytically continued across the 

segment L of the real axis < into the lower half-plane Im < < 0 with the 

help of the relations 

0 (5) + x (t) = 0, 0 (5) t- x (5) = 0 (4.9) 

For the cOrnnon analytic functions o(c) and ~(5) in the exterior of 

the cut M + N we obtain on the basis of (4.7) to (4.9) the following 

linear boundary value problem of Riemann for two functions: 
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(4.10) 

a+ (5) = - edejX- (5) + 2djeiej on M, @+ (6) = - X- (5) on N 

X’ (0 = - e-~%_o- (5) 4 &jje-*ei on M 
I X+ (5) = - a- (6) on N 

‘lhe Riemann problem (4.10) is a particular case of a more general 
Riemann boundary value problem, the solution of which was obtained in 
[9I. Its solution may be found in closed form. 

It is not difficult to show that when the unbuckled region of the z- 
plane bounded by the contour L + h+ is simply connected, the problem may 
always be solved in closed form by a mapping onto the upper half-plane 
5, reducing it exactly as before to the boundary value problem (4.7) 
and thereupon to the Riemann problem (4.10). Similarly, the solution 
may be found in the case where the boundary conditions 

are specified on the contour !b, where ek and fk are arbitrary piecewise 
constant functions. 

lhe author is indebted to L.A. Galin and G.I. Rarenblatt for the 
interest which they have shown in this work and in the discussion of it 
at seminars on continuum mechanics in the Institute of Mechanics of the 
Academy of Sciences of the USSR and the Institute of Mechanics of 
Moscow University. 
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